South East Asian J. of Mathematics and Mathematical Sciences Vol. 15, No. 3 (2019), pp. 41-52

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

SOME PROPERTIES OF SUBCLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

N. Shilpa

PG Department of Mathematics, JSS College of Arts, Commerce and Science, Ooty Road, Mysore, Karnataka - 570 025, INDIA

E-mail: drshilpamaths@gmail.com

(Received: Aug. 13, 2019 Accepted: Dec. 13, 2019 Published: Dec. 31, 2019)

Abstract: The object of the present paper is to define a new subclass $\mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$ of analytic functions whose non-negative coefficients from the second onwards are negative by using the differential operator $D_{m,\lambda}^{\zeta}$. We derive some interesting properties like coefficient inequalities, distortion bounds, convolution conditions and a result which unifies radii of close-to-convexity, starlikeness and convexity.

Keywords and Phrases: Analytic functions, Modified Hadamard product, Coefficient inequalities, Convolution conditions, Al-Oboudi operator.

2010 Mathematics Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} be the class of analytic univalent functions f normalized by

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k, \tag{1.1}$$

which are analytic in the open unit disc \mathcal{U} .

Let \mathcal{T} denote the subclass of analytic functions in \mathcal{U} , consisting of functions whose non-zero coefficients from the second onwards are negative, that is an analytic function $f \in \mathcal{T}$ if it has a Taylor expansion of the form

$$f(z) = z - \sum_{k=2}^{\infty} a_k z^k, \quad a_k \ge 0.$$
 (1.2)

For any two functions f and $h \in \mathcal{T}$, where f is of the form (1.2) and $h(z) = z - \sum_{k=2}^{\infty} c_k z^k$. The modified Hadamard product of f and h, is defined by

$$(f \bullet h)(z) = z - \sum_{k=2}^{\infty} a_k c_k z^k.$$

Let $P_1(A, B)$ [3] denote the class of analytic functions in \mathcal{U} which are of the form

$$\frac{1 + A\omega(z)}{1 + B\omega(z)}, \quad -1 \le A < B \le 1,$$

where ω is analytic in \mathcal{U} , $\omega(0) = 0$, $|\omega(z)| < 1$.

For a function f in \mathcal{T} , the new differential operator $D_{m,\lambda}^{\zeta}$ [2] is defined by,

$$D_{m,\lambda}^{\zeta} f(z) = z - \sum_{k=2}^{\infty} \left[1 + (k-1) \sum_{j=1}^{m} {m \choose j} (-1)^{j+1} \lambda^{j} \right]^{\zeta} a_{k} z^{k}, \tag{1.3}$$

where $0 \le \lambda \in \mathbb{R}$, $m \in \mathbb{N}$ and $\zeta \in \mathbb{N}_0$. or equivalently we have

$$D_{m,\lambda}^{\zeta} f(z) = z - \sum_{k=2}^{\infty} \left[1 + (k-1)c_j^m(\lambda) \right]^{\zeta} a_k z^k,$$

where
$$c_j^m(\lambda) = \sum_{i=1}^m {m \choose j} (-1)^{j+1} \lambda^j$$
, and $0 \le \lambda \in \mathbb{R}$, $m \in \mathbb{N}$ and $\zeta \in \mathbb{N}_0$.

Note that, for m=1, we get the Al-Oboudi operator [1] and for $m=\lambda=1$, we get the Sălăgean operator [5].

Now using the differential operator $D_{m,\lambda}^{\zeta}$ we define a new subclass $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ as follows.

Definition 1.1. A function $f \in \mathcal{T}$ is said to be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$ if and only if

$$\left[\frac{(1-\gamma)z(D_{m,\lambda}^{\zeta}f(z))' + \gamma z(D_{m,\lambda}^{\zeta+1}f(z))'}{(1-\gamma)(D_{m,\lambda}^{\zeta}f(z)) + \gamma(D_{m,\lambda}^{\zeta+1}f(z))}\right] \in \mathcal{P}_1(A,B), \quad z \in \mathcal{U}.$$
(1.4)

where $0 \le \gamma \le 1$, $0 \le \lambda \in \mathbb{R}$, $m \in \mathbb{N}$ and $\zeta \in \mathbb{N}_0$, $-1 \le A < B \le 1$. Observe that by specializing the parameters we get the following subclasses

• $S_1^*(A, B)$ and $K_1(A, B)$ studied by Ganesan [3]

- $\mathcal{T}(m,\alpha)$, studied by Hur and Oh [4]
- $\mathcal{T}_{\lambda}^{m}(A, B, \gamma)$ studied by Latha and shilpa [6].

It is our goal in the following sections to prove coefficient inequalities, distortion bounds, radii of close-to-convexity, starlikeness, convexity and convolution conditions for the functions belonging to the above class.

2. Main Results

Theorem 2.1. Let the function f(z) be defined by (1.2). Then f(z) is in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ if and only if

$$\sum_{k=2}^{\infty} c_k(\zeta, \lambda) [k(1+B) - (1+A)] [1 + \gamma c_j^m(\lambda)(k-1)] a_k \le B - A$$
 (2.1)

where

$$c_k(\zeta,\lambda) = [1 + c_j^m(\lambda)(k-1)]^{\zeta}. \tag{2.2}$$

The result is sharp and the extremal functions are

$$f_k(z) = z - \frac{(B-A)}{c_k(\zeta,\lambda)[k(1+B) - (1+A)][1+\gamma c_i^m(\lambda)(k-1)]} z^k, \quad k \ge 2.$$
 (2.3)

Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we have

$$\left| \frac{(1-\gamma)z(D_{m,\lambda}^{\zeta}f(z))' + \gamma z(D_{m,\lambda}^{\zeta+1}f(z))'}{(1-\gamma)(D_{m,\lambda}^{\zeta}f(z)) + \gamma(D_{m,\lambda}^{\zeta+1}f(z))} - 1 \right| \le$$

$$\left[1 + \frac{\sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] k a_k - 1}{1 - \sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] a_k}\right] \le \frac{B - A}{1 + B}.$$

Appealing, to the maximum modulus theorem, we have $f(z) \in \mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$. Conversely, assume that $f(z) \in \mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$. Then

$$\Re\left\{\frac{z - \sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] k a_k z^k}{z - \sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] a_k z^k}\right\} > \frac{1 + A}{1 + B}.$$

Choose values of z on the real axis so that

$$\frac{(1-\gamma)z(D_{m,\lambda}^{\zeta}f(z))'+\gamma z(D_{m,\lambda}^{\zeta+1}f(z))'}{(1-\gamma)(D_{m,\lambda}^{\zeta}f(z))+\gamma(D_{m,\lambda}^{\zeta+1}f(z))},$$

is real. Letting $z \to 1^-$ through real values, we obtain,

$$\Re\left\{\frac{1-\sum_{k=2}^{\infty}[1+c_{j}^{m}(\lambda)(k-1)]^{\zeta}[1+\gamma c_{j}^{m}(\lambda)(k-1)]ka_{k}}{1-\sum_{k=2}^{\infty}[1+c_{j}^{m}(\lambda)(k-1)]^{\zeta}[1+\gamma c_{j}^{m}(\lambda)(k-1)]a_{k}}\right\} \geq \frac{1+A}{1+B}$$

or equivalently we get,

$$1 - \sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] k a_k$$

$$\geq \frac{1+A}{1+B} \left[1 - \sum_{k=2}^{\infty} [1 + c_j^m(\lambda)(k-1)]^{\zeta} [1 + \gamma c_j^m(\lambda)(k-1)] a_k \right]$$

which yields (2.1).

Theorem 2.2. Let the function f defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ then

$$\sum_{k=2}^{\infty} a_k \le \frac{B-A}{c_2(\zeta,\lambda)(1+\gamma c_j^m(\lambda))(2B-A+1)}.$$
 (2.4)

and

$$\sum_{k=2}^{\infty} k a_k \le \frac{2(B-A)}{c_2(\zeta,\lambda)(1+\gamma c_j^m(\lambda))(2B-A+1)}.$$
 (2.5)

The equality in (2.4) and (25) is attained for the function f given by (2.3). **Proof.** From Theorem 2.1, and from (2.1) it follows that

$$(1 + \gamma c_j^m(\lambda))(2B - A + 1)c_2(\zeta, \lambda) \sum_{k=2}^{\infty} a_k$$

$$\leq \sum_{k=2}^{\infty} c_k(\zeta, \lambda)[k(1+B) - (1+A)][1 + \gamma c_j^m(\lambda)(k-1)]a_k$$

$$< (B - A),$$

which yields (2.4). From (1.4), we have

$$(1 + \gamma c_j^m(\lambda))c_2(\zeta, \lambda) \sum_{k=2}^{\infty} [k(1+B) - (1+A)]a_k \le (B-A),$$

that is,

$$(1 + \gamma c_j^m(\lambda))c_2(\zeta, \lambda) \sum_{k=2}^{\infty} k a_k (1+B) \le (B-A) + (1+A)(1 + \gamma c_j^m(\lambda))c_2(\zeta, \lambda) \sum_{k=2}^{\infty} a_k.$$

From (2.4) the above equation becomes

$$(1 + \gamma c_j^m(\lambda))c_2(\zeta, \lambda) \sum_{k=2}^{\infty} ka_k(1+B) \le$$

$$(B-A) + (1+A)(1+\gamma c_j^m(\lambda))c_2(\zeta,\lambda)\frac{B-A}{(1+\gamma c_i^m(\lambda))c_2(\zeta,\lambda)(2B-A+1)}.$$

thus we have the proof.

Theorem 2.3. Let the function f defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$. Then we have

$$|D_{m,\lambda}^{i}f(z)| \ge |z| - \frac{(B-A)}{c_k(\zeta - i, \lambda)(2B - A + 1)(1 + \gamma c_i^m(\lambda))}|z|^2. \tag{2.6}$$

and

$$|D_{m,\lambda}^{i}f(z)| \le |z| + \frac{(B-A)}{c_k(\zeta - i,\lambda)(2B - A + 1)(1 + \gamma c_j^m(\lambda))}|z|^2. \tag{2.7}$$

for $z \in \mathcal{U}$, where $0 \le i \le \zeta$ and $c_k(\zeta - i, \lambda)$ is given by (2.2). The equalities in (2.6) and (2.7) are attained for the function f given by

$$f_2(z) = z - \frac{(B-A)}{(1+c_i^m(\lambda))^{\zeta}(2B-A+1)(1+\gamma c_i^m(\lambda))} z^2.$$
 (2.8)

Proof. Note that $f \in \mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ if and only if $D_{m,\lambda}^{i}f(z) \in \mathcal{T}_{m,\lambda}^{\zeta-i}(A,B,\gamma)$ and

$$D_{m,\lambda}^{i}f(z) = z - \sum_{k=2}^{\infty} c_k(i,\lambda)a_k z^k.$$
(2.9)

From Theorem 2.1, it follows that

$$c_k(\zeta - i, \lambda)(2B - A + 1)(1 + \gamma c_j^m(\lambda)) \sum_{k=2}^{\infty} c_k(i, \lambda) a_k \le$$

$$\sum_{k=2}^{\infty} c_k(\zeta, \lambda) [k(1+B) - (1+A)] [1 + \gamma c_j^m(\lambda)(k-1)] a_k \le B - A$$

that is,

$$\sum_{k=2}^{\infty} c_k(i,\lambda) a_k \le \frac{(B-A)}{c_k(\zeta-i,\lambda)(2B-A+1)(1+\gamma c_j^m(\lambda))}.$$
 (2.10)

finally we get (2.6) and (2.7). Note that the equalities (2.6) and (2.7) are attained for the function f defined by

$$D_{m,\lambda}^{i}f(z) = z - \frac{(B-A)}{c_k(\zeta - i, \lambda)(2B - A + 1)(1 + \gamma c_i^m(\lambda))}z^2.$$
 (2.11)

this completes the proof.

Corollary 2.4. Let the function f defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$. Then we have,

$$|f(z)| \ge |z| - \frac{(B-A)}{c_2(\zeta,\lambda)(2B-A+1)(1+\gamma c_i^m(\lambda))}|z|^2.$$
 (2.12)

and

$$|f(z)| \le |z| + \frac{(B-A)}{c_2(\zeta,\lambda)(2B-A+1)(1+\gamma c_i^m(\lambda))}|z|^2.$$
 (2.13)

for $z \in \mathcal{U}$. The equalities in (2.12) and (2.13) are attained for the function f_2 given by (2.8).

Corollary 2.5. Let the function f defined by (1.2) be in the class $\mathcal{T}_{\lambda}^{m}(A, B, \gamma)$. Then we have,

$$|f'(z)| \ge 1 - \frac{2(B-A)}{c_2(\zeta,\lambda)(2B-A+1)(1+\gamma c_i^m(\lambda))}|z|. \tag{2.14}$$

and

$$|f'(z)| \le 1 + \frac{2(B-A)}{c_2(\zeta,\lambda)(2B-A+1)(1+\gamma c_i^m(\lambda))}|z|. \tag{2.15}$$

for $z \in \mathcal{U}$. The equalities in (2.14) and (2.15) are attained for the function f_2 given in (2.8).

Corollary 2.6. Let the function f defined by (1.2) be in the class $\mathcal{T}_{\lambda}^{m}(A, B, \gamma)$. Then the unit disc is mapped onto a domain that contains the disc

$$|\omega| < \frac{c_2(\zeta, \lambda)(2B - A + 1)(1 + \gamma c_j^m(\lambda)) - (B - A)}{c_k(\zeta, \lambda)(2B - A + 1)(1 + \gamma c_i^m(\lambda))}.$$
 (2.16)

The result is sharp with the extremal function f_2 given in (2.8).

Theorem 2.7. Let the function $f \in \mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$. Then

$$\left| \frac{f \bullet \Phi}{f \bullet \Psi} - 1 \right| < 1 - \delta, \quad in \quad |z| < r,$$

with $\Phi(z) = z - \sum_{k=2}^{\infty} \lambda_k z^k$, and $\Psi(z) = z - \sum_{k=2}^{\infty} \mu_k z^k$, are analytic in \mathcal{U} with the conditions $\lambda_k \geq 0$, $\mu_k \geq 0$, $\lambda_k \geq \mu_k$, for $k \geq 2$ and $f(z) \bullet \Psi(z) \neq 0$. Where

$$r = \inf_{k} \left[\frac{c_{k}(\zeta, \lambda)[k(1+B) - (1+A)][1 + \gamma c_{j}^{m}(\lambda)(k-1)](1-\delta)}{(B-A)[(\lambda_{k} - \mu_{k}) + \mu_{k}(1-\delta)]} \right]^{\frac{1}{k-1}}, \quad k \ge 2.$$
(2.17)

Proof. Consider,

$$\left| \frac{f \bullet \Phi}{f \bullet \Psi} - 1 \right| = \left| \frac{z - \sum_{k=2}^{\infty} \lambda_k a_k z^k}{z - \sum_{k=2}^{\infty} \mu_k a_k z^k} - 1 \right| \le$$

$$\left| \frac{z - \sum_{k=2}^{\infty} \lambda_k a_k z^k - z + \sum_{k=2}^{\infty} \mu_k a_k z^k}{z - \sum_{k=2}^{\infty} \mu_k a_k z^k} \right| \le \frac{\sum_{k=2}^{\infty} a_k [\lambda_k - \mu_k] |z|^{k-1}}{1 - \sum_{k=2}^{\infty} \mu_k a_k |z|^{k-1}} < 1 - \delta$$

$$\sum_{k=2}^{\infty} a_k [(\lambda_k - \mu_k) + (1 - \delta)\mu_k] |z|^{k-1} \le 1 - \delta$$
(2.18)

where r is given by (2.17).

Hence by using Theorem (2.1), (2.18) will be true if,

$$\frac{[(\lambda_k - \mu_k) + (1 - \delta)\mu_k]}{1 - \delta} |z|^{k-1} \le \frac{c_k(\zeta, \lambda)[k(1 + B) - (1 + A)][1 + \gamma c_j^m(\lambda)(k - 1)]}{B - A}$$

$$|z| = \left[\frac{c_k(\zeta, \lambda)[k(1+B) - (1+A)][1 + \gamma c_j^m(\lambda)(k-1)](1-\delta)}{(B-A)[(\lambda_k - \mu_k) + \mu_k(1-\delta)]} \right]^{\frac{1}{k-1}}$$

By choosing $\Phi(z) = \frac{z}{(1-z)^2}$ and $\Psi(z) = z$, in the above theorem we get the following corollary.

Corollary 2.8. Let the function f defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$.

Then f is close-to-convex of order δ (0 \leq δ < 1), hence univalent, in the disc $|z| < r_1$, where

$$r_{1} = \inf_{k} \left[\frac{(1 - \delta)c_{k}(\zeta, \lambda)[k(1 + B) - (1 + A)][1 + \gamma c_{j}^{m}(\lambda)(k - 1)]}{(B - A)k} \right]^{\frac{1}{k - 1}}, \quad k \ge 2.$$
(2.19)

The result is sharp with the extremal function f given by (2.3).

By choosing $\Phi(z) = \frac{z}{(1-z)^2}$ and $\Psi(z) = \frac{z}{1-z}$, in the above theorem we get the following corollary.

Corollary 2.9. Let the function f defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$. Then f is starlike of order δ (0 \leq δ < 1), hence univalent, in the disc $|z| < r_2$, where

$$r_2 = \inf_{k} \left[\frac{(1-\delta)c_k(\zeta,\lambda)[k(1+B) - (1+A)][1+\gamma c_j^m(\lambda)(k-1)]}{(B-A)(k-\delta)} \right]^{\frac{1}{k-1}}, \quad k \ge 2.$$
(2.20)

The result is sharp with the extremal function f given by (2.3).

By choosing $\Phi(z) = \frac{z+z^2}{(1-z)^3}$ and $\Psi(z) = \frac{z}{(1-z)^2}$, in the above theorem we get the following corollary.

Corollary 2.10. Let the function f be defined by (1.2) be in the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$. Then f is convex of order δ (0 \leq δ < 1), hence univalent, in the disc $|z| < r_3$, where

$$r_{3} \leq \inf_{k} \left[\frac{(1-\delta)c_{k}(\zeta,\lambda)[k(1+B)-(1+A)][1+\gamma c_{j}^{m}(\lambda)(k-1)]}{k(B-A)(k-\delta)} \right]^{\frac{1}{k-1}}, \quad k \geq 2.$$
(2.21)

and $c_k^{\zeta}(m,\lambda)$ is given by (2.2), $k \geq 2$.

3. Convolution Properties

Theorem 3.1. If f is of the form (1.2) and $g(z) = z - \sum_{k=2}^{\infty} b_k z^k$ belongs to the class $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ then $h(z) = (f \bullet g)(z) = z - \sum_{k=2}^{\infty} a_k b_k z^k$ will be an element of

 $\mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$ with $-1 \leq A_1 < B_1 \leq 1$, where $B_1 \geq \frac{A_1 + \alpha}{1-\alpha}$, $A_1 \leq 1 - 2\alpha$, where

$$\alpha = \frac{(B-A)^2}{[2B-A+1]^2(1+c_i^m(\lambda))^{\zeta}(1+\gamma c_i^m(\lambda)) - (B-A)^2}, \quad 0 \le \gamma \le 1$$

and these bounds are sharp.

Proof. From (2.1), we have

$$\sum_{k=2}^{\infty} c_k(\zeta, \lambda) [k(1+B) - (1+A)] [1 + \gamma c_j^m(\lambda)(k-1)] a_k \le B - A.$$

where $c_k(\zeta, \lambda) = [1 + c_j^m(\lambda)(k-1)]^m$

$$\sum_{k=2}^{\infty} \frac{c_k(\zeta, \lambda)[k(1+B) - (1+A)][1 + \gamma c_j^m(\lambda)(k-1)]a_k}{B - A} \le 1.$$
 (3.1)

and

$$\sum_{k=2}^{\infty} \frac{c_k(\zeta, \lambda)[k(1+B) - (1+A)][1 + \gamma c_j^m(\lambda)(k-1)]b_k}{B - A} \le 1.$$
 (3.2)

In view of Cauchy-Schwarz inequality, from (3.1) and (3.2) we obtain

$$\sum_{k=2}^{\infty} u c_k(\zeta, \lambda) [1 + \gamma c_j^m(\lambda)(k-1)] \sqrt{a_k b_k} \le 1 \quad \text{where} \quad u = \frac{[k(1+B) - (1+A)]}{B - A}$$
(3.3)

We need to find A_1 and B_1 such that $h = f \bullet g \in \mathcal{T}_{m,\lambda}^{\zeta}(A,B,\gamma)$, or equivalently,

$$\sum_{k=2}^{\infty} u_1 c_k(\zeta, \lambda) [1 + \gamma c_j^m(\lambda)(k-1)] a_k b_k \le 1 \text{ where } u_1 = \frac{[k(1+B_1) - (1+A_1)]}{B_1 - A_1}$$
 (3.4)

The inequality (3.4) will be true if

$$u_1 c_k(\zeta, \lambda) [1 + \gamma c_j^m(\lambda)(k-1)] a_k b_k \le u c_k(\zeta, \lambda) [1 + \gamma c_j^m(\lambda)(k-1)] \sqrt{a_k b_k}$$
 or

$$\sqrt{a_k b_k} \le \frac{u}{u_1}.\tag{3.5}$$

But from (3.3) we get $\sqrt{a_k b_k} \le \frac{1}{u c_k(\zeta, \lambda)[1 + \gamma c_i^m(\lambda)(k-1)]}$.

Thus (3.5) will be true if

$$\frac{1}{uc_k(\zeta,\lambda)[1+\gamma c_i^m(\lambda)(k-1)]} \le \frac{u}{u_1},$$

or

$$u_1 \le u^2 c_k(\zeta, \lambda) [1 + \gamma c_i^m(\lambda)(k-1)],$$

that is,

$$\frac{[k(1+B_1)-(1+A_1)]}{(B_1-A_1)} \le u^2 c_k(\zeta,\lambda) [1+\gamma c_j^m(\lambda)(k-1)]. \tag{3.6}$$

Using $-1 \le B < A \le 1$, it is obvious that $u^2 c_k(\zeta, \lambda)[1 + \gamma c_i^m(\lambda)(k-1)] > 1$, for $\zeta \ge 2$ and hence (3.6) yields

$$\frac{(B_1 - A_1)}{1 + B_1} \ge \frac{k - 1}{u^2 c_k(\zeta, \lambda) [1 + \gamma c_i^m(\lambda)(k - 1)] - 1} = \phi(k).$$

Since $\phi(k)$ is a decreasing function of k, for $k \geq 2$, $\phi(2)$ is the maximum value of $\phi(k)$ and therefore

$$\frac{B_1 - A_1}{1 + B_1} \ge \frac{(B - A)^2}{[2B - A + 1]^2 (1 + c_i^m(\lambda))^\zeta (1 + \gamma c_i^m(\lambda)) - (B - A)^2} = \alpha.$$
 (3.7)

Obviously, $\alpha < 1$ and fixing A_1 in (3.7), we get

$$B_1 \ge \frac{A_1 + \alpha}{1 - \alpha}.\tag{3.8}$$

Substituting $B_1 \leq 1$ in (3.8) we obtain, $A_1 \leq 1 - 2\alpha$. For verifying sharpness, we note that if k = 2, then

$$c_2(\zeta,\lambda) = (1 + c_i^m(\lambda))^{\zeta}$$

and hence by taking

$$f(z) = g(z) = z - \frac{(B - A)(1 + c_j^m(\lambda))^{\zeta}}{(2B - A + 1)(1 + \gamma c_i^m(\lambda))} z^2 \in \mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$$

we get

$$h(z) = (f \bullet g)(z) = z - \frac{(B - A)^2 (1 + c_j^m(\lambda))^{\zeta}}{(2B - A + 1)^2 (1 + \gamma c_i^m(\lambda))^2} z^2 \in \mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma).$$

If we use this function h in (3.4), the inequality (3.7) transforms to equality, that is, $\frac{B_1 - A_1}{1 + B_1} = \alpha$. Now if $B_1 = 1$, then $A_1 = 1 - \alpha$, which shows in this case $h \in \mathcal{T}_{m,\lambda}^{\zeta}(A, B, \gamma)$.

References

- [1] Al-Oboudi, On univalent functions defined by a generalized *Sălăgean* operator, Int. J. Math. Sci., 25-28, (2004), 1429-1436.
- [2] B. A. Frasin, A new differential operator of analytic functions involving Binomial series, Bol. Soc. Paran. Mat. V.38, (2018), 205-213.
- [3] M. S. Ganeshan, On certain classes of analytic functions, Indian, J. Pure, appl, Math, 13(1), (1982), 47-57.
- [4] M. D. Hur, and G. H. Oh, On certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J., 5 (1989), 69-80.
- [5] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Mathe. Springer Verlag, 1013, (1983), 362 372.
- [6] N. Shilpa, and S. Latha, Some Results Involving Functions with Negative Coefficients and Al-Oboudi Operator, Journal of advanced studies in topology , Vol.3, No. 1 (2012), 89-97.